Functional Analysis of Problem Behavior: Basic Methods, Extensions, & Challenges

Brian A. Iwata
Distinguished Professor
Psychology & Psychiatry
University of Florida

Acknowledgements

❖ National Institutes of Health
❖ Pew Memorial Trust
❖ Council on Developmental Disabilities
❖ Florida Dept. Children & Families

Michael Dorsey, Bridget Shore, Juliet Connors, Amanda Rone
Gary Pace, Dorothea Lerman, April Worsdell, Meagan Gregory
Keith Slifer, Beth Duncan, Claudia Dozier, Griffin Rooker
Ken Bauman, Jodi Mazaleski, Pamela Neidert, Tara Fahmie
Gina Richman, Iser DeLeon, Jessica Thomason, Jill Harper
Glynnis Cowdery, Han-Leong Goh, David Wilson, Angie Querim
Michael Kalsher, SungWoo Kahng, Carrie Dempsey, Gracie Beavers
Robert Kissel, Melissa Shirley, Natalie Rolider, Kathryn Horton
F. Charles Mace, Jana Lindberg, Sarah Bloom, Kathryn Jann
Teresa Rodgers, Michelle Wallace, Jennifer Fritz, Sarah Mead
Timothy Vollmer, Gregory Hanley, Leah Koehler, Jennifer
Jennifer Zarcone, Eileen Roscoe, Jennifer Hammond, Haddock
Richard Smith, Rachel Thompson, Erin Camp, Hyapatia Bolivar

© 2010 B. A. Iwata
Main Points

- **Learned Functions of Problem Behavior**
- **Approaches to Assessment**
 - Indirect methods
 - Descriptive analysis
 - Functional (experimental) analysis
- **Functional analysis methodology**
 - Key components
 - Variations and extensions
- **Implications for Treatment**
 - Elimination of establishing operations (EOs)
 - Elimination of maintaining contingencies
 - Behavioral replacement

Special Note

JABA
Journal of Applied Behavior Analysis

- Spring 2013 (Vol. 46, #1)
- Special issue on functional analysis
- 31 articles on various aspects of assessment & treatment
Structural vs. Functional Analysis

- **Structural analysis:**
 - Identification of parts or components
 - General: Of what is this thing made?
 - Environment & behavior: What events are happening?

- **Functional analysis:**
 - Identification of uses or purpose
 - General: What does this thing do?
 - Environment & behavior: Why are these events happening?
Functional Analysis of Behavior

◊ **Purpose:**
◊ To identify the variables of which behavior is a function; to discover "cause-effect" relationships (Skinner, 1953)

◊ **Goals:**
◊ Understanding
◊ Treatment
◊ Prevention

Learned Functions of Behavior Disorders

◊ **Assumptions**
◊ Most behavior problems are learned
◊ Adaptive and maladaptive behavior have common functions

◊ **Positive Reinforcement (Sr+, reward)**
◊ Social (attention, access to tangible materials)
◊ Automatic (sensory stimulation)

◊ **Negative Reinforcement (Sr-, escape or avoidance)**
◊ Social (escape from task demands)
◊ Automatic (pain attenuation)
Social-Positive Reinforcement
(Social Sr+)

Antecedent event
(Deprivation from attention)
\[\rightarrow \]

Behavior
(SIB, AGG, PD, etc.)
\[\rightarrow \]

Consequent event
(Blocking, reprimand, comfort, leisure items, snacks, etc.)

Diagram:

- **Do you Need a hug?**
- **You’ll hurt yourself**
- **Can I read you a story?**
- **How about some ice cream?**
- **NO!**
Function

<table>
<thead>
<tr>
<th>Function</th>
<th>Antecedent (EO)</th>
<th>Consequent (Sr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Positive Reinforcement</td>
<td>Deprivation (no attention)</td>
<td>Attention</td>
</tr>
<tr>
<td>Automatic Positive Reinforcement</td>
<td>Deprivation (no sensory stimulation)</td>
<td>Sensory stimulation</td>
</tr>
<tr>
<td>Social Negative Reinforcement</td>
<td>Aversive stimulation (task demands)</td>
<td>Removal of task</td>
</tr>
<tr>
<td>Automatic Negative Reinforcement</td>
<td>Aversive stimulation (pain or discomfort)</td>
<td>Alleviation of pain</td>
</tr>
</tbody>
</table>

Self-Injurious Behavior (SIB)

Behavior that produces injury to the individual’s own body

- **Biting:** Closure of upper / lower teeth on the skin (also mouthing and sucking)
- **Eye Gouging:** Finger insertion into the ocular area
- **Head Banging:** Forceful contact of the head with a stationary object
- **Hitting:** Forceful contact of one body part with another or with a stationary object
- **Pica:** Ingestion of inedible substances
- **Rumination:** Regurgitation and reswallowing of previously ingested food
- **Scratching:** Raking-like or picking movement of fingernails on the skin
Slide to remain blank for posting on web site.
Slide to remain blank for posting on web site.
Slide to remain blank for posting on web site.
Slide to remain blank for posting on web site.
Functional Behavioral Assessment

Precision

Simplicity

Least

Most

Anecdotal (Indirect) Methods

Descriptive (Naturalistic) Analysis

Functional (Experimental) Analysis

Terminology

- Functional behavioral assessment (FBA): Any systematic attempt to identify sources of reinforcement for problem behavior
- Functional analysis (FA): Use of the experimental model to identify cause-effect (environment-behavior) relations

Kahng et al. (AJMR, 2002)

Cumulative Number of Data Sets by Type of Assessment
Indirect (Anecdotal) Methods

- General Characteristics
 - Focus on circumstances under which behavior occurs
 - Based on informant recall (no direct observation)

- Examples
 - MAS (Motivational Assessment Scale)
 - QABF (Questions about Behavioral Function)
 - FAST (Functional Analysis Screening Tool)

- Advantages
 - Simplicity, efficiency, no risk, potentially useful information

- Limitations
 - Poor reliability, questionable validity

- Suggestion for implementation
 - Use only as a preliminary guide
Descriptive (Naturalistic) Analysis

- General Characteristics
 - Direct observation of circumstances under which behavior occurs
- Examples
 - Scatter plot: Temporal recording of behavior
 - ABC analysis: Recording of interactional sequences
 - Interval recording: Temporal recording of rapid sequences
- Advantage
 - More reliable than indirect methods
- Limitations
 - Structural analysis only; no information about function
- Suggestion for implementation
 - Use to clarify definition of target behavior

A-B-C Analysis

Purpose
- To identify naturally occurring, observable antecedents and consequences of behavior

Typical procedure
- Define target behaviors (B)
- Specify criteria for antecedent (A) and consequent (C) events
- Occurrence of B → Record A, B, and C
- Organize A-C clusters
- Generate hypothesis based on A-C correlations with B
A–B–C Form

- **Layout**
 - Client info
 - Time
 - Location
 - Antecedent: Precedes PB
 - Behavior: Target PB
 - Consequence: Follows PB

- **Record**
 - Occurrence of PB serves as occasion for recording

- **Summary**
 - Organize A & C events into functional groupings

Functional (Experimental) Analysis

- **General Characteristics**
 - Systematic exposure to controlled assessment conditions
 - Test: Suspected antecedent and consequent present
 - Control: Suspected antecedent and consequent absent
 - Variations
 - BFA, single-function, trial based, latency, precursor
 - Advantage
 - Most precise method of assessment
 - Limitation
 - Most complex approach
Some Key Terms

- **Antecedent event: Establishing operation (EO)**
 - Alters the effects of a reinforcer
 - EO present: Sr more valuable
 - EO absent: Sr less valuable
 - Example: Food deprivation ➔ food more valuable

- **Antecedent event: Discriminative stimulus (SD)**
 - Stimulus in whose presence reinforcement is more likely
 - SD present: Sr available
 - SD absent: Sr unavailable
 - Example: Traffic light ➔ Stop/go more likely to be reinforced

- **Consequent event: Reinforcement contingency (Sr)**
 - If-then relation between a response and a consequence
 - Contingency present: Behavior maintains
 - Contingency absent: Behavior extinguishes

Functional Analysis Protocol

<table>
<thead>
<tr>
<th>Condition</th>
<th>SD</th>
<th>EO</th>
<th>Consequence</th>
<th>Contingency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention</td>
<td>SD</td>
<td>EO</td>
<td>Consequence</td>
<td>Contingency</td>
</tr>
<tr>
<td>Demand</td>
<td>Th 1</td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td>Alone</td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Play</td>
<td>N/A</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Th 3</td>
<td>Th. presents learning trials</td>
<td>Timeout for beh. problem</td>
<td>Negative rfmnt (escape)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Th. ignores Cl.</td>
<td>Th. attends to beh. problem</td>
<td>Positive rfmnt (attention)</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td>No stimulation</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Slide to remain blank for posting on web site.
Slide to remain blank for posting on web site.
Typical Response Patterns

Function: Social Positive Reinforcement (attention)

Function: Social Negative Reinforcement (escape)

Function: Automatic Reinforcement (self-stimulation)

Challenges to Functional Analysis Methodology

- **Complexity of assessment:** It’s too difficult
- **Time constraints:** It takes too much time
- **Setting constraints:** I don’t have a controlled setting
- **High-risk behavior:** It’s too dangerous
- **Low-rate behavior:** I never see the behavior
- **Uninterpretable results:** I can’t identify the function
- **Ethical concerns about worsening of behavior**
Complexity of Assessment: Logic & Data

- Logical analysis
 - What skills are required to conduct a functional analysis?
- Empirical analysis
 - Undergraduate students (Iwata et al., 2000)
 - B.A.-level therapists (Moore et al. 2002)
 - Teachers (Wallace et al., 2004)
 - Teleconferencing (Barretto et al., 2006)

Time Constraints

Brief Functional Analysis (BFA)

- Northup et al. (1991): One, 5-min session of each condition
- Derby et al. (1992): 50% functions identified (40/79)
Probable Functions of Specific Behavior Disorders

<table>
<thead>
<tr>
<th>Behavior Disorder</th>
<th>Positive Reinforcement</th>
<th>Negative Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Social</td>
<td>Automatic</td>
</tr>
<tr>
<td>Aggression</td>
<td>+</td>
<td>ø</td>
</tr>
<tr>
<td>Tantrums</td>
<td>+</td>
<td>ø</td>
</tr>
<tr>
<td>Noncompliance</td>
<td>+</td>
<td>ø</td>
</tr>
<tr>
<td>Property Destruction</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>“Stereotypies””</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>SIB</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Probable Functions of Specific Behavior Disorders

<table>
<thead>
<tr>
<th>Behavior Disorder</th>
<th>Positive Reinforcement</th>
<th>Negative Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggression</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tantrums</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Noncompliance</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Property Destruction</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>“Stereotypies”</td>
<td>?</td>
<td>+</td>
</tr>
<tr>
<td>SIB</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Positive Reinforcement

- Social: +
- Automatic: ø

Negative Reinforcement

- Social: +
- Automatic: ø
Time Constraints: Assessment Sequence

Indirect Method (MAS, QABF, FAST) – 2 informants

- **SIB:** All questions relevant
- **AGG:** Social questions only
- **STPY:** Automatic questions only

Single function FA if indirect outcome reliable

- **Social Sr+** (Positive): Attention (or Tangible) vs. Play
- **Social Sr−** (Negative): Demand vs. Play
- **Automatic Sr:** Alone vs. Play (or Alone probe)

Time Constraints: Single Function Tests

![Graphs showing responses over sessions for different conditions: Attention vs. Play, Demand vs. Play, and Alone vs. Maintenance vs. Extinction across sessions.](image)
Setting Constraints

❖ FA in the home?
 - Day et al. (1994), Harding et al. (2001), Nadjowski et al. (2008)

❖ Typical FA in typical classroom?
 - Berg et al. (2007); Derby et al. (1994); Dolezal & Kurtz (2010); Frea & Hughes (1997); Grauvogel & Wallace (2010);
 - Lang et al. (2008, 2009, 2010); McComas et al. (2000, 2003);
 - Mueller et al. (2003); O’Reilly et al. (2009)

Classroom-Specific, Trial-Based FA

(Bloom et al., 2011, 2013; Kodak et al., 2013; Lambert et al., 2013)

Classroom restrictions
 - Rapidly changing activities ➔ Brief sessions
 - Contiguous test-control comparison (control precedes test)
 - Capitalize on naturally occurring activities

Study arrangement (Bloom et al.): 4-min trial
 - 2-min control ➔ PB yes or no
 - 2-min test ➔ PB yes or no

Recommended arrangement: 5-min trial
 - 1-min control ➔ PB yes or no
 - 4-min test ➔ PB yes or no
FA Trials

- **Attention (no tasks present)**
 - Control: Stand near student; initiate pleasant conversation
 - Test: Stand near student but ignore; deliver attention only following problem behavior

- **Task Demand**
 - Control: Observe while no task demands are present
 - Test: Deliver frequent prompts to engage in difficult work; remove work following problem behavior

- **Alone**
 - Two consecutive test segments. Observe when student is not working, not interacting with others, and has no access to leisure items
Correspondence: Social Sr+

Correspondence: Social Sr-
Rate (frequency) vs Latency

Latency = time from start to response

High rates ➔ Short latencies
Low rates ➔ Long latencies

High-Risk Behavior

- Latency FA (Thomason, Iwata, Neidert, & Roscoe, 2011, Study 3)
- N=10, SIB or AGG
- Latency FA
 - Deliver consequence for 1st response and terminate session (or if no response in 5 min)
 - Measure: # seconds to occurrence of 1st response
- Typical FA: Standard protocol, 10-min sessions
- Results: 9/10 correspondence
Correspondence: Social Sr+ (Attention)

Precursor Behavior & Response Classes

Definition

✿ Topographically different than target response
✿ Precedes and predicts occurrence of target

Response chain (sequence of responses, different reinforcers)
✿ Put on coat (stay warm) ➔ walk out door (go somewhere)
✿ Get out of chair (close to target) ➔ aggression (attn or escape)

Response class (substitutable responses, same reinforcer)
✿ Ask for water (water) ➔ go looking for water (water)
✿ Swear at teacher (escape) ➔ aggression (escape)
Analysis of Precursor Behavior
(Smith & Churchill, 2002)

- Precursor
 - Different R that predicts occurrence of target R
- Method
 - N= 4 (3 SIB, 1 AGG)
 - FA #1: Contingencies on SIB / AGG
 - FA #2: Contingencies on precursor Rs
- Results
 - 4/4 matched FAs
 - PB lower during FA of precursor R
- Implications
 - If one can identify a precursor to PB, and
 - If precursor and PB members of the same functional class
 - FA of precursor ➔ function of PB and lower rate of PB
 - Treatment of PB based on function of precursor
- Question: How does one identify the precursor?
 - See Fritz et al. (JABA 2013)

Why does Problem Behavior Occur at Low Rates?

- Insufficient exposure to test condition
 - Lengthen sessions (Davis et al., 2012)
- Idiosyncratic EO or reinforcer
 - See reviews (Hanley et al., 2003; Schlechenmeyer et al., 2013)
- Response class hierarchy
 - Do not combine PBs (Richman et al., 1999)
- Combined EOs (same maintaining contingency)
 - Divided attention condition (Mace et al., 1986)
- Combined contingencies (Sr+ and Sr- simultaneously)
 - Escape to tangible condition (Zarcone et al., 1996)
- Covert behavior
 - Hidden observation (Ringdahl et al., 2002)
 - Response product measures (Maglieri et al, 2000)
More Reasons for Low-Rate Behavior
(I’m making these up)

Delayed EOs (as in “revenge”)
- EO ➔ either no opportunity or SD (punishment)
- EO ➔ delay ➔ opportunity available or SD (punishment) absent

Cumulative EOs (“the straw the broke the camel’s back”)
- EO 1 ➔ Not a problem
- EO 2 ➔ Not a problem
- EO 1 ➔ EO 2 ➔ EO 3 ➔ Problem

Undifferentiated Results: Case Analysis
(Hagopian et al., 2013)

Modifications to 82 undifferentiated FAs
- Most effective: Design change (pairwise, extended “alone”)
- 2nd most effective: Separating aggregate responses
- Least effective: Antecedent changes (location, stimuli)

Results
- One modification: 55/82 cases clear
- Two modifications: 16/24 cases clear
- 8 cases unresolved
Summary of Functional Analysis Variations

<table>
<thead>
<tr>
<th>Limitation</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity</td>
<td>Sorry, I cannot help you</td>
</tr>
<tr>
<td>Time</td>
<td>BFA (extended), Single-function test</td>
</tr>
<tr>
<td>Setting</td>
<td>Trial-based FA</td>
</tr>
<tr>
<td>Risk</td>
<td>All approximations and occurrences, Protective devices, Latency or Precursor FA</td>
</tr>
<tr>
<td>Low-rate</td>
<td>Lengthen sessions, combine EOs or contingencies, unobtrusive observation</td>
</tr>
<tr>
<td>A mess</td>
<td>Simplify design, separate PBs</td>
</tr>
</tbody>
</table>

Ethical Issues in the Functional Analysis of Problem Behavior

The issue: Exposure to conditions that increase risk

- Utility of the FA?
 - Data highly reliable (unlike indirect assessment
 - Identifies cause-effect relation (unlike DA)
 - The gold standard of assessment
- Explicit worsening of behavior?
 - “Sometimes it can be just as illuminating to demonstrate how a behavior may be worsened (B, W, & R, 1968)
 - FA involves exposure to common, everyday conditions
 - Analogy: Dermatologic patch test
 - PB does not get worse during an FA (Call et al., 2012; Kahng et al., 2015)
- Risk management and client protection?
 - FA policy and protocol
Risk Management: FA Policy

- Rational for FA: To identify causes of problem behavior
- General description: Exposure to common conditions that may influence PB
- Risk assessment: Medical evaluation, HS of injuries
- Approval, oversight, review: Who is in charge?
- Informed consent: A must
- Staff qualifications and competency: CBA + experience?
- Safeguards: Periodic status checks

Risk Management: FA Protocol

Description of:
- Conditions: Tests and controls
- Designs: Arrangement of conditions
- Duration: Arbitrary limit = 20 cycles of conditions?

Safety measures:
- Protective equipment (or blocking)
- Low-risk FA format: Latency, precursor

Session termination criteria
- Outcome (usually nature of injury)
- Response (type or rate)

Emergency procedures
RECAP: Functional Behavioral Assessment

- **Indirect Methods**
 - Simple but unreliable
- **DA: Descriptive (Naturalistic) Analysis**
 - Reliable but time consuming; structural analysis only
- **FA: Functional (Experimental) Analysis**
 - The gold standard but complex

- **Common recommendations**
 - Three-stage assessment: Indirect ➔ DA ➔ FA
 - Two-stage assessment: DA ➔ FA
 - My suggestion: Neither

What about DA vs. Indirect Methods?

ABA based on scientific study of human behavior

- Emphasis on objective measurement
- Direct observation (DA) superior to opinion (indirect)

BUT

- **DA: Objective approach to structural analysis**
- **Indirect: Subjective approach to functional analysis**

And if you read the research carefully:

- Neither method identifies cause-effect relations very well
- DA much more complex than indirect
- DA takes about 15-20 times longer than indirect
- Clinical interview easily accommodates indirect assessment
- DA poses some risk; Indirect poses none
- Indirect errors probably random; DA errors probably biased

So . . . which would you use?
Recommended Assessment Sequence

Step #1: Clinical interview + MAS, QABF, or FAST

Step #2: Brief (10-15 min) observation (or skip entirely)

Step #3: Functional analysis (FA, BFA, single function test, trial-based FA, latency FA, precursor FA)

Rationale: Clinicians may do #1 well but not #2 or #3. Compare the value of watching a client for 30 min (#2) vs. seeing what a client does when ignored, when presented with demands, etc. (#3)

Barriers to Implementation

Current status of FA methods
- The standard in clinical research and practice
- Still not the the most common approach to assessment
- Why the 30+ year lag in widespread application?

Commonly mentioned limitations
- Practical constraints
- Ethical issues

The real barriers
- Most academics have never conducted an FA of PB
- Most graduate students never learn how to conduct an FA
- DA is an excellent structural analysis (A ➔ B ➔ C)
- Everyone knows how to conduct a DA
Summary

You **SHOULD** conduct a functional analysis
- More reliable than a questionnaire or rating scale
- More efficient and precise than a DA

You **CAN** conduct a functional analysis
- Easy to do (control antecedent and consequent events)
- Procedural variations for almost all limiting conditions

SO JUST GO DO IT!

Implications for Intervention
Reinforcement-Based Approaches to Behavior Reduction

- Eliminate the behavior’s establishing operation or antecedent event (deprivation or aversive stimulation)
 - Noncontingent reinforcement (NCR)

- Eliminate the behavior’s maintaining contingency
 - Extinction (EXT)

- Replace the behavior with an alternative response
 - Differential reinforcement (DRA)

Function: Social Positive Reinforcement

- Establishing operation: Deprivation from attention
 - Noncontingent attention (NCR)

- Maintaining reinforcer: Attention
 - EXT (attention) or “planned ignoring”

- Behavioral replacement:
 - Establish an alternative attention-seeking response
Function: Social Negative Reinforcement

- **Establishing operation:** Aversive stimulation (e.g., demands)
 - Noncontingent breaks from work (NCR)
 - Maintenance tasks substituted for acquisition tasks
 - Reduced session duration
 - Demand fading (frequency or difficulty)
 - High probability (Hi-p) instructional sequence
 - Noncontingent Sr+

- **Maintaining reinforcer:** Escape
 - EXT (escape); EXT (attention) contraindicated

- **Behavioral replacement:**
 - Reinforce precursor behavior
 - Establish an alternative escape behavior
 - Strengthen compliance via Sr- and Sr+

Function: Automatic Positive Reinforcement

- **Establishing operation:** Generalized deprivation
 - Noncontingent stimulation (NCR)

- **Maintaining reinforcer:** Sensory stimulation
 - EXT (sensory); mechanical devices, blocking, etc.
 - Response effort interventions

- **Behavioral replacement:**
 - Establish an alt. self-stimulatory response