2015

Early Numeracy \&
Beginning Math Concepts

Jared campbell

Wíllow Hozella

Educational consultants, PATTAN Harrisburg

Pennsylvania Training and Technical Assistance Network

PaTTAN's Mission

The mission of the Pennsylvania
Training and Technical Assistance
Network (PaTTAN) is to support the efforts and initiatives of the Bureau of Special Education, and to build the capacity of local educational agencies
to serve students who receive special education services.

PDE's Commitment to Least Restrictive Environment (LRE)

Our goal for each child is to ensure Individualized Education Program (IEP) teams begin with the general education setting with the use of Supplementary Aids and Services before considering a more restrictive environment.

Session Outline

Early numeracy concepts and skills are essential for continued achievement in mathematics. Structuring students' earliest experiences with mathematics in a CRA sequence can help them conceptualize the concept of number and provide for more fluent and flexible counting and computation.

Objectives

- Participants will be able to model whole numbers using place value concepts.
- Participants will understand the importance of the ability to subitize and apply to skill to teach addition and subtraction.
- Participants will be able to utilize various tools (ten-frame, rek-n-rek, etc.) to model mathematical concepts.

Tech Connection

group name: pattan math

 password: ptnmathSession Outline

1. Quasi-History of Math
2. Concept of Number
3. Number Bonds
4. Ten-Frames
5. Rekenrek
6. Fractions

Early Numeracy...

PA Core: Early Numbers/Operations Standards

A Quasi-History

What is this?

not factual....

A Quasi-History of Number

20,000 years ago...

- Tally Systems
- Grouping structure

(Czechoslovakia, 1937)

A Quasi-History of Number

A Quasi-History of Number

Tally Systems
Grouping structure

(Czechoslovakia)

Place tokens in ball
Bake to prevent tampering
Mark outside with symbols to preserve records
Some time passes... local systems converge
Babylonian Number Systems c. 1950 BC

A Quasi-History of Number

A Quasi－History of Number

Germanic／Irish／Britain／Roman（Base I2）

$$
\begin{gathered}
12 \text { troy oz. }=1 \text { troy lb. } \\
12 \text { pence }=1 \text { shilling } \\
\text { Dozen }=12 \\
\text { Gross }=12 \times 12=144 \\
\text { Great Gross }=12 \times 12 \times 12=1728 \\
\text { TIME }
\end{gathered}
$$

$$
\begin{gathered}
12 \times 2 \text { hours }=1 \text { day } \quad 12 \text { months }=1 \text { year } \\
12 \text { zodiac signs } \quad \text { Chinese Calendar } \\
\text { Babylon } \ldots \mathbf{6 0} \div \mathbf{5}=\mathbf{1 2} \text { ! }
\end{gathered}
$$

＂Shang－style＂Counting
一ニミミ区介十) (ら|
$\frac{1}{x^{x}}$
$50+8$
5 tens， 8

$60+9$
6 tens， 9

Language \& Number

The numeric systems invented vary across time and place, and there is no doubt that the properties of such a system can facilitate or impede the development of children's mathematical understanding.

Chinese (and Asian languages based on ancient Chinese) are organized such that the numerical names are compatible with the traditional 10 -base numeration system. So spoken numbers correspond exactly to their written equivalent: 15 is spoken as "ten five" and 57 as "five ten seven."

Most European systems of number words are irregular up to 100 . For example in French, 92 is said as "four twenty twelve," corresponding to $4 \times 20+12$.

The more complicated the number word system is, the harder it is for children to learn the counting sequence.

Interpreting Numbers

1. What is this number?

2. What is the meaning of this number?

$$
3264
$$

Decimal (base 10)

Language of Number

26 symbols \quad name \Longrightarrow sound \Longrightarrow word
Carla piece chocolate

$$
0123456788
$$

10 symbols \quad name \Longrightarrow quantity \Longrightarrow number
207
74
-7
0.7
1/7

Symbols \& Meaning

- Two ways to understand letters...
- " B " is the letter "bee" and makes the sound /b/
- What about numbers?
- Names are taught
- Meaning is based on place value (base 10)

Number Names \& Meanings

N	Name	Meaning	II	Name	Meaning
0	Zero	None	20	Twenty	Two tens
1	One	One	21	Twenty-one	Two tens, one
2	Two	Two	22	Twenty-two	Two tens, two
3	Three	Three	23	Twenty-three	Two tens, three
4	Four	Four	24	Twenty-four	Two tens, four
5	Five	Five	25	Twenty-five	Two tens, five
6	Six	Six	26	Twenty-six	Two tens, six
7	Seven	Seven	27	Twenty-seven	Twotens, seven
8	Eight	Eight	28	Twenty-eight	Two tens, eight
9	Nine	Nine	29	Twenty-nine	Two tens, nine
10	Ten	One ten	30	Thirty	Three tens
11	Eleven	One ten, One	31	Thirty-one	Three tens, one
12	Twelve	One ten, Two	32	Thirty-two	Three tens, two
13	Thirteen	One ten, Three	Other examples		
14	Fourteen	One ten, Four	48	Forty-eight	Four tens, eight
15	Fifteen	One teri, Five	53	Fifty-three	Five tens, three
16	Sixteen	One ten, Six	62	Sixty-two	Sixtens, two
17	Seventeen	One ten, Seven	75	Seventy-five	Seven tens, five
18	Eighteen	One ten, Eight	81	Eighty-one	Eights tens, one
19	Nineteen	One ten, Nine	99	Ninety-nine	Nine tens, nine

What is Number Sense?

> "a child's fluidity and flexibility with numbers, the sense of what numbers mean, and an ability to perform mental nathematics and to look at the world and make comparisons"

(Gersten \& Chard, 1999)

CRA Sequence of Instruction

[^0]
CRA

- Concrete (sense making by moving)
- Representational (sense making by drawing)
- Abstract (sense making with symbols) CONSISTENT LANGUAGE

Rationale - Doing What Works

Research-based studies show that students who use concrete materials develop more precise and more comprehensive mental representations, often
show more motivation and on-task behavior, understand mathematical ideas, and better apply these ideas to life situations.

Why would CRA be effective?

- Multimodal forms of math acquisition to aid memory and retrieval
- Meaningful manipulations of materials allows students to rationalize abstract mathematics
- Procedural accuracy; provides alternate to algorithm memorization

Other Research.

- Direct Instruction
- Errorless Teaching
- Formative Assessment
- Correct Feedback
- Improved Teacher Content Knowledge
- Task Analyze
- Instruct on Specific Skills or Process
- Monitor progress
- Correct errors

Something here...

- Multimodal forms of math acquisition to aid memory and retrieval
- Meaningful manipulations of materials allows students to rationalize abstract mathematics
- Procedural accuracy; provides alternate to algorithm memorization

Students having difficulties with math...

- Counting seen as rote, mechanical, left to right, 1: 1 correspondence only; INEFFECTIVE
- Automaticity problems take up working memory, inhibit discourse \& algebraic thinking

concept of Number

"What does three really mean? What is three-ness"

What is Number Sense?

"a child's fluidity an flexibility with numbers, the sense of what numbers mean, and an ability to perforn mental nathematics and to look at the world and make comparisons"
(Gersten \& Chard, 1999)

What does " 3 " really mean?

Teaching each symbol or Teaching the collection

Each Symbol

- Name - Meaning - Quantity
- Ability to Subitize

Collection

- Count Sequence
- Magnitude
- Missing Number
- Applications

Subitize

The ability to see a quantity and know how many, without "counting."

Subitizing \& Conceptual Counting

$$
3+2=\mathbf{5}
$$

Elementary Classroom - Conceptual Addition

Teaching each symbol or Teaching the collection

Each Symbol

- Name - Meaning - Quantity
- Ability to Subitize

Collection

- Count Sequence
- Magnitude
- Missing Number
- Applications

Basic Principles of Counting

Numental Meatonises ant Chtian's Concept or Numbers

One-to-one - Counting one "thing" at a time; transfer from uncounted group to counted group (1:1 Correspondance)

Stable-order - Establishes consistent sequence

Cardinal - The last count represent the quantity in the counted group (Cardinality)

Abstraction - applying counting to like objects, actions, sounds, etc...

Order-irrelevance - Can count in any order

Stages of Early Arithmetical Learning

The Stages of Early Arithmetical Learming (SLaL) dassfies the varions stzategies used by children into six stager:	
Stage	Indicators
Stape de Emergent Courting	Cannct coant vilible itema The chald may not know the member mords. The child cannce coordnate number words with items.
Stage 1: Perceptuat Coonting	Can cpurt percevied iterm May itnchan seving, fearinge ar fewing itarm.
Stage 2: Finctative Courtion	Can coura the total of two collactices. Cosonts from coe.
Sage 3ilntid Number Sequevce:	Child uses ond inferstand counting-on rather than counting-from-one: Upers counting in to solov additiun and miking addend tasks. May une court-down-fram stratugien.
Sespe A: interreedate Number Seqpunct:	The chid uner abd ankentazhe: * trunt-down-from atratiagios * mpunt -down-fo stratngien The ched can choose the most effixient strantgy
Stage 5 Jacie Nomber Sequence	The chid uses a range of noo-cour by one sprateges: - Compersation - Uíng woown revíts - Andregto ten - Comminativity - Sobtraction as Die inverse of adsition - Awarneria al tari as a lemen ramber

Wright, R., Martland. J, Stafford, A., \& Stanger, G. (2006). Teaching Number: Advancing Children's Skills and Strategies. London: Sage.

What is Number Sense?

"a child's fluidity and flexibility with numbers, the sense of what numbers mean, and an ability to perform mental nathematics and to look at the world and make comparisons"
(Gersten \& Chard, 1999)

From counting to

 computation... or more efficient counting

What is the sum?
 Strategies

$1000+32=1032-1-1{ }^{\text {Compansemen }}$
 $999+32=1031$
 $999+1+31=1000+31$

Decomposition \& Compensation

Decomposition - decomposing numbers to compute faster

$$
\begin{aligned}
& \checkmark \text { make a } 5 \\
& \checkmark \text { make a } 10 \\
& \checkmark \text { doubles }(\pm 1)
\end{aligned}
$$ How do I know?

Compensation - Adjust the problem to compute, then readjust the answer
\checkmark may utilize known facts.

The Mathematics Framework, Appendix F

Levels	$8+6=14$	$14-8=6$
Level 1 Court al	Count All	Take Away
Leverl 2 Conetion	Count On	
Level 3: Flecompose Make a ten (general) ore addend breaks apart to make 10 with the other adbend Make a ten from 5s within each addiend)		
Doubles $=n$	$\begin{aligned} & 6+\overline{6} \\ = & 6+6+2 \\ = & 12+2=14 \end{aligned}$	

Number Bonds

Composing \& Decomposing Numbers

The Doubting Teacher

Do they "see" what I "see"? How do I know?

Composing \& Decomposing Numbers

Number Bonds - Fact Families

$$
\begin{aligned}
& 4=2+2 \\
& 4=1+3 \\
& 4=0+4
\end{aligned}
$$

Number Bonds - Fact Families

$$
a+b=c
$$

$$
a+b=?
$$

$$
\left.\begin{array}{l}
a+?=c \\
?+b=c
\end{array}\right\} c-a=?
$$

$$
c-?=b
$$

Partner Practice (C or R)

Partner Practice (C or R)

- Take Away
- Count on (Think +)

3-1

- Missing addend

4-2

- Compensation

6-4

- From 5

8-7

- From 10
- Doubles (± 1)

The Doubting Teachar
8-4
9-3

Ten-Frames

Decomposition

Decomposition

$2+1=$

 2
"two and one make ... " "two plus one makes ..."
"two plus one equals ... "

Decomposition

see the parts \& see the whole

Purpose of 10 -frame

$$
\begin{gathered}
5-\text { frame } \\
10-\text { frame } \\
\text { two } 10-\text { frames }
\end{gathered}
$$

- See sets of 10
- Organize in rectangular array
- Subitize
- Reduces need to "count"
- Visually decompose numbers in sets of 5

Subitizing the 10 -frame support

Ten-Frame Variations

Help students Subitize on the 10 - frame.

What do you see?

$5+2+2$
$5+4$

9
$7+2$
9-2
10-1

Modeling on a ten frame

Count on

$6+2=8$
$5+3=8$

$8-2=6$
Count on
(Think ${ }^{+4}$)

Modeling on a ten frame

$$
\begin{aligned}
& 4+3=7 \\
& 6+1=7 \\
& \text { Doubles +1 } \\
& 8-1=7 \\
& \text { Doubles - }
\end{aligned}
$$

Modeling on a ten frame Making ten

$$
\begin{gathered}
7+4= \\
3+1 \\
10+1= \\
11
\end{gathered}
$$

Modeling on a ten frame Making ten

$8+6=$
$2+4$
$10+4=$

Partner Practice (C)

- Count All or Take Away
$8+9$
- Counting on
$4+6$
- Subtraction: Missing addend

7-3

- Making 5
- Making 10
$3+4$
- Doubles (± 1)
$7+8$
The Doubting Teachar
12-4

Teaching facts w/ 10-frame support

$\mathbb{N} \mid$ D

Ten-Frame Progression

Ten Frame Ideas

Rekenrek

Vocabulary

Rekenrek

(wreck-n-wreck)

The Rekenrek (also called an arithmetic rack) has emerged as perhaps the most powerful of all models for young learners.

Developed by mathematics education researchers at the highly regarded Freudenthal Institute in the Netherlands.

Designed to reflect the natural intuitions and informal strategies that young children bring to the study of numbers, addition, and subtraction.

Provides a visual model that encourages young learners to build numbers by

- groups of five
- groups of ten
- doubling and halving strategies
- counting-on from known addition/subtraction

Rekenrek

Some activities...

- See \& Slide - Given \#, make in 1 move.
- Build a Number - move first row, how many more on second row
- Show Me - Give number, make combination
- Flash Attack - Show beads, get number

THE REKENREK

The Rekenrek is a powerful tool that supports children to

- develop/reinforce cardinality (visualization of groupings),
- develop one-to-one counting (organizes the count),
- allows those who still need to count by ones to do so, but also helps children to build towards counting on,
- visualize and build number relationships, and
- work flexibly with numbers by encouraging decomposition strategies.

One more idea...

Fractions

Early on in Fractions...
$\begin{array}{lll}3 & 3 & 3\end{array}$
久3 3

$$
2345
$$

Early on in Fractions...

$$
\frac{a}{b}=a \times \frac{1}{b} \quad \text { counting " } \frac{1}{b} \text { 's " }
$$

$$
\overline{3}
$$

"thirds"

Vocabulary

Fraction - from Latin: fractus,"broken"

ercomente
vstina@rimivalidag
counted

Interpreting Fractions - "counting"

Definitions
 Models

Area

circles, pattern blocks, graph/dot paper, paper folding

Ratio

Measurement

Operator/Quotient
Length
Fraction strips, Cuisenaire rods, line segments, number line

Sets
Objects, groups or arrays

What \& When?

Early on in Fractions...
Geometry
$\frac{a}{b}=a \times \frac{1}{b} \quad$ counting ${ }^{\frac{1}{b}}{ }^{\prime} s^{\prime \prime}$

$\frac{1}{2}=\frac{2}{4}=\frac{4}{8}$

Early on in Fractions...

Geometry

$\frac{a}{b}=a \times \frac{1}{b} \quad$ counting " $\frac{1}{b}$'s"

Early on in Fractions...
Number

$$
\frac{a}{b}=a \times \frac{1}{b} \quad \text { counting " } \frac{1}{b} \text { 's " }
$$

CRA Sequence of Instruction

2-Tesch and practite intodeling procedurescancretily
3-Connict the toincinteth a remesartation of the concran
4-Prastie mpalive the procefure rearesertiationaly
5-Comect the representaion to the abdract smbitols
6 - Practia ethe atatract modsing of ble procatiore
7-Malia coesnections betweenal three roodeb to Nelp ntudents monhor
Heir tiourining and choice of ropesenentation
A-Provibe ceporturitianfor wudent chace.

CRA

- Concrete (sense making by moving)
- Representational (sense making by drawing)
- Abstract (sense making with symbols)

CONSISTENT LANGUAGE

Resources

Tech Connection

\% wiggio

wiggio.com

group name: pattan math password: ptnmath

CRA Days

	Pittsburgh	Harrisburg	King of Prussia
Early Numeracy	10/23/15	10/9/15	10/15/15
Addition \& Subtraction	11/3/15	11/20/15	11/11/15
Multiplication \& Division	2/25/16	2/16/16	2/25/16
Fractions	3/15/16	3/16/16	3/18/16
Integers \& Equations	4/7/16	3/31/16	4/1/16
WNWNW, ¢a			${ }^{93}$

Contact Information

www.pattan.net

Educational Consultants

Jared Campbell jcampbell@pattan.net

Willow Hozella whozella@pattan.net

- wiggio

[^0]: I- introdece the mathematical concept|s)
 2-Iesch and prectite intodeling procedurescancretily
 3 - Connect tse concrote to a reverentation of the concrent
 4-Practicempsaline the procedure represernationaly
 5-Connoct the representaion to the abstract sambols
 6 - Pracfice the atalract molaing of the prucatiors
 7 -Mava cospections betweenal thee roodels to Nelp studesta monhr
 Heir tiouribing and choice of representation
 A - Provibe teporturitiasifor Whalent chare

