Establishing Natural Reinforcer Control in Children with Autism

Tina Sidener, Ph.D., BCBA-D

Some Observations

- Reinforcers that maintain behaviors of typically developing children?
- · Verbal behavior
- Social interactions
- Independent play
- SOME children with autism
- · Social interactions come to function as reinforcers
- · Imitate others "spontaneously"
- · Playing with toys becomes reinforcing

Contrived and Natural Reinforcement

- The power of reinforcement
- May be described as
- · Conditioned and unconditioned
- · Positive and negative
- · Social and automatic
- ·Natural and contrived

Contrived and Natural Reinforcement

- Natural reinforcer is "independent of the behavior analyst's or practitioner's efforts" (Cooper, Heron, & Heward, 2007, p. 623)
- Contrived reinforcer
 - Part of a practitioner's efforts to change behavior
 - Something other than the reinforcer in the natural environment for that response

Practice

Consequence	Contrived for	Natural for
Attention	Turning page of a book	
Lollipop	Building with blocks	
Token	Doing a puzzle	

Why Do We Use Contrived Reinforcers with Children with Autism?

- Need for many teaching trials
- Teaching skills with no natural counterpart
- Behavior "trapping" (Baer & Wolf, 1970)
- Consequences function differently
 - · Social stimuli (Spradlin & Brady, 1999; Vollmer & Hackenberg, 1999)
 - Automatic reinforcement during play (and powerful reinforcement of rituals, sameness, stereotypy)

Benefits of Natural Reinforcer Control

- · We know we can change behavior!
- · Challenge is to bring responses under control of natural reinforcers
- Benefits
 - · Similarity to peers, maintenance
 - Klintwall & Eikeseth (2011): significant positive correlation between having more socially mediated reinforcers and better outcomes of EIBI
- Requires analysis of what maintains responses for typically developing children
 - Consider 3 types of skills...

What's the Natural Reinforcer?

Teaching Children with Autism to Differentially Imitate Observed Behaviors

Paula M. Staudinger, MA, BCBA Tina M. Sidener, Ph.D., BCBA-D Kenneth F. Reeve, Ph.D., BCBA-D Bridget A. Taylor, PsyD, BCBA-D

Imitating Peers

- · Purpose: evaluate effects of
 - · A differential observing response (DOR) and prompting
 - · On the differential motor imitation
 - Of 2 boys with autism
- Kenny (4), Kepler (11)
 - · Matched pictures to objects, objects to pictures
 - Imitated when instructed
 - Spontaneous imitation (VB-MAPP) = 0

What is Play?

Play in Children with Autism

- Substantial delays in development of play
- · Persistent deficits in social communication/interaction
- Restrictive/repetitive patterns of behavior, interest, or activities

(DSM-5; American Psychiatric Association, 2013)

Literature Review of Play Interventions

Parameters

Year of publication

Age/number of participants

Setting

Stimuli used as reinforcers

Type of play (functional/symbolic)

Independent variable

Design/experimental control

Maintenance

Interobserver agreement

Preference assessment

Skill assessments

Toys used

Dependent variable

Data collection

Generalization

Social validity

Treatment integrity

Preference Assessment of Toys: 8 studies

- Currently no research on teaching block building to children with autism
 - Survey: included in most programs
- · Bronstein, Sidener, Reeve, Hoch, & Kaplan-Reimer
 - · Select targets by developmental level

Johnson, H. (1933/1996). The art of block building. In E. Hirsch (Ed.), *The block book* (pp. 9-25). Washington, DC: National Association for the Education of Young Children. Reifel, S. (1984). Block construction: Children's developmental landmarks in representation of space. *Young Children, 40*, 61-67.

- Evaluate effects of automatic reinforcement alone
- · Data on engagement and preference

Getting to Natural Reinforcer Control

- How do behavior analysts do this?
 - Teach with natural reinforcers only
 - -Teach with contrived remain in place
 - •Teach with contrived remove later...

Strategies to Enhance Maintenance

	Acquisition	Reduction
Thinning schedule of reinforcement	7.9%	40%
Increasing the delay to reinforcement	1.6%	5%
Use of natural reinforcers	12.7%	0%
Use of booster sessions	11.1%	5%
Use of self-management	11.1%	5%
Other	4.8%	10%
None	61.9%	45%

A	Technolo Conditio	ogy for Es oned Reir	stablishir nforcers	ng
		Benefits		
	Increase variety of toys, reinforcers	Establish social stimuli as reinforcers	Better maintenance than contrived reinforcers?	

Establishing Conditioned Reinforcers

- A stimulus that is a reinforcer because it has been paired with another reinforcer
- · Skinner (1938): formal beginning
 - · Demonstrated producing conditioned reinforcers with rats
 - After consistently presenting a click with food, used the click sound alone to train lever pressing
 - Lever pressing increased but then decreased as the click lost its effectiveness without food pairing

Temporal Arrangements (SSP and RSP)

Research with Humans

- First study demonstrating development of a conditioned reinforcer with humans:
 - · Hubbard (1951) Typically developing adults
- Most subsequent research conducted with typically developing preschoolers
 Few studies with clinical populations
- Considerations
 - Type of pairing
 - each time, at the same time, paired with, every time, whenever, accompanied, followed, right before, contiguous, preceded
 - Demonstration of neutral stimulus, reinforcing stimulus, and reinforcement
 effect resulting from pairing

Research: Developmental Disabilities (excluding autism)

- · Identified neutral stimulus, reinforcing stimulus
- · Demonstrated reinforcement effect resulting from pairing
- Excluded studies on token systems/generalized conditioned reinforcers

Research with Children with Autism

- · Issues in autism may warrant different procedures
- "Stimulus overselectivity": Children with autism often respond to some parts, but not all parts, of a complex stimulus
- · Lovaas, Schreibman, Koegel, and Rehm (1971)

- · When parts of the stimulus were then presented alone...
 - Typically developing children responded to the complex stimulus and single stimuli similarly
 - Children with autism responded primarily to only one of the stimuli (it differed across children which one)

Research with Children with Autism

Lovaas, Freitag, Kinder, Rubenstein, Schaeffer, & Simmons (1966)

- After simultaneous pairing failed
- "Good" established as S^D for food
- · Delivering "good" contingent upon lever pressing

Limited experimental control

Behavioral Interventions Behav. Intervent. (2014)

Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/bin.1384

Lack of reinforcer assessments (to identify neutral and reinforcing stimuli)

Isaksen & Holth (2009)

- Established smiles and nods as S^Ds
- Used as reinforcers during joint attention training

Holth, Vandbakk, Finstad, Grønnerud, & Sørensen (2009)

- Compared DT to delay pairing
- Responding increased in both
- DT more responses for 5 out of 7 of the participants

A DISCRIMINATION TRAINING PROCEDURE TO ESTABLISH CONDITIONED REINFORCERS FOR CHILDREN WITH AUTISM

Catherine Taylor-Santa¹, Tina M. Sidener^{1*}, James E. Carr² and Kenneth F. Reeve

¹Department of Applied Behavior Analysis, Caldwell College, Caldwell, NJ 07006, USA ²Behavior Analyst Certification Board, Littleton, CO 80127, USA

- Purpose: Evaluate DT to establish conditioned reinforcers with children with autism
- 3 boys with autism: 6

- Address limitations of previous research
 - Reinforcer assessments
 - Interspersal of S[∆]s
 - Enhance discrimination
 - Serve as control

Response Assessment

Sti	mulus	Response		
Туре	lcon	Pre-Test	Discrimination Training	Post-Test
SD	• •			
S-Delta		Ð		Ø

A DISCRIMINATION TRAINING PROCEDURE TO ESTABLISH PRAISE AS A CONDITIONED REINFORCER FOR CHILDREN WITH AUTISM

Erin L. Sainsbury, M.A., BCBA Tina M. Sidener, Ph.D., BCBA-D Kenneth F. Reeve, Ph.D., BCBA-D Catherine Taylor-Santa, M.A., BCBA David Sidener, Ph.D., BCBA-D

Purpose

- · Systematically replicated Taylor-Santa et al. (2014
- · Evaluated DT to establish praise statements as conditioned reinforcers
- · 3 boys with autism (11-15 yrs old)
- · Praise did not appear to function as a reinforcer
- · Bluetooth® speaker behind participant, remotely controlled

A Comparison of Pairing Procedures to Establish Visual Stimuli as Reinforcers for Adolescents with Autism

Christina Slaten, M.A. Tina M. Sidener, Ph.D., BCBA-D Catherine Taylor-Santa, MA, BCBA Kenneth Reeve, Ph.D., BCBA-D Danielle Gureghian, Ph.D., BCBA-D

Purpose

- Compare the effectiveness of STIMULUS-STIMULUS PAIRING (SSP) and RESPONSE-STIMULUS PAIRING (RSP)
- · Replicated some aspects of Dozier et al. (2012)
- Adolescents with ASD
 - George & Andy: 12 yo
 - Chad & Todd: 15 yo
- · Address previous research
 - · Different response during pairing and post-pairing
 - Interspersal of S- trials
 - · Conditions counterbalanced

Programming for Stimulus Generalization to Conditioned Reinforcers with Children with Autism

> Benjamin D. Rhodes Tina M. Sidener Ken F. Reeve James E. Carr Catherine Taylor-Santa

Purpose

- Evaluate multiple exemplar training during discrimination training on generalization to novel stimuli
 - $\cdot 2 S^{D}s$ and 2 S^{Δ}s during DT
 - Probe generalization to stimulus similar to the S^Ds

Conclusions

tsidener@caldwell.edu

